數(shù)學(xué)建模:大學(xué)生數(shù)學(xué)綜合素質(zhì)的核心
吳莉
摘 要:數(shù)學(xué)建模是一種對實(shí)際的現(xiàn)象通過心智活動構(gòu)造出能抓住其重要且有用的特征的表示,是大學(xué)生數(shù)學(xué)綜合素質(zhì)的核心內(nèi)容。本文探討了數(shù)學(xué)建模的內(nèi)涵,分析了數(shù)學(xué)建模與數(shù)學(xué)綜合素質(zhì)的關(guān)系,并指出如何通過數(shù)學(xué)建模來提高大學(xué)生的綜合素質(zhì)。 關(guān)鍵詞:大學(xué)生;數(shù)學(xué)建模;數(shù)學(xué)素質(zhì)
Abstract: Mathematics modeling is a mathematical tool for solving real world problems with focus on major and unique features of the system studied, which is the core of mathematics competence of undergraduates. In this paper, the significance of mathematics modeling is analyzed by presenting the relations between mathematics modeling and mathematics competence. Finally, it studies how to cultivate undergraduates′ comprehensive qualities by mathematics modeling study. Key words: undergraduate; mathematics modeling; mathematics competence 數(shù)學(xué)模型作為對實(shí)際事物的一種數(shù)學(xué)抽象或數(shù)學(xué)簡化,其應(yīng)用性強(qiáng)的特點(diǎn)使其影響正在向更廣闊的領(lǐng)域拓展、延伸。因適應(yīng)新時期應(yīng)用型、創(chuàng)新型人才培養(yǎng)的需要,數(shù)學(xué)建模受到了高等院校的重視,相應(yīng)的課程建設(shè)計(jì)劃得到了實(shí)施,競賽活動得到了開展。基于數(shù)學(xué)建模培養(yǎng)學(xué)生解決實(shí)際問題能力的優(yōu)勢,通過數(shù)學(xué)建模來提升大學(xué)生的綜合素質(zhì),已成為一個逐步引起關(guān)注的教育教學(xué)問題。 一、數(shù)學(xué)建模的內(nèi)涵及其應(yīng)用趨勢 《數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》中提出:“數(shù)學(xué)探究、數(shù)學(xué)建模、數(shù)學(xué)文化是貫穿于整個高中數(shù)學(xué)課程的重要內(nèi)容……,高中階段至少應(yīng)安排一次較為完整的數(shù)學(xué)探究、數(shù)學(xué)建模活動。”[1]對于數(shù)學(xué)建模的理解,可以說它是一種數(shù)學(xué)技術(shù),一種數(shù)學(xué)的思考方法。它是“對實(shí)際的現(xiàn)象通過心智活動構(gòu)造出能抓住其重要且有用的特征的表示,常常是形象化的或符號的數(shù)學(xué)表示”[2]。從科學(xué)、工程、經(jīng)濟(jì)、管理等角度來看,數(shù)學(xué)建模就是用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并“解決”實(shí)際問題的一種強(qiáng)有力的數(shù)學(xué)工具。 通俗地說,數(shù)學(xué)建模就是建立數(shù)學(xué)模型的過程。幾乎一切應(yīng)用科學(xué)的基礎(chǔ)都是數(shù)學(xué)建模,凡是要用數(shù)學(xué)解決的實(shí)際問題也都是通過數(shù)學(xué)建模的過程來實(shí)現(xiàn)的。就其趨勢而言,其應(yīng)用范圍越來越廣,并在大學(xué)生數(shù)學(xué)素質(zhì)培養(yǎng)中肩負(fù)著重要使命。尤其是 20 世紀(jì)中葉計(jì)算機(jī)和其他技術(shù)突飛猛進(jìn)的發(fā)展,給數(shù)學(xué)建模以極大的推動,數(shù)學(xué)建模也極大地拓展了數(shù)學(xué)的應(yīng)用范圍。曾經(jīng)有位外國學(xué)者說過:“一切科學(xué)和工程技術(shù)人員的教育必須包括數(shù)學(xué)和計(jì)算數(shù)學(xué)的更多內(nèi)容。數(shù)學(xué)建模和與之相伴的計(jì)算正在成為工程設(shè)計(jì)中的關(guān)鍵工具。”[3]正因?yàn)閿?shù)學(xué)通過數(shù)學(xué)建模的過程能對事實(shí)上很混亂的東西形成概念的顯性化和理想化,數(shù)學(xué)建模和與之相伴的計(jì)算正在成為工程設(shè)計(jì)中的關(guān)鍵工具。因而了解和一定程度掌握并應(yīng)用數(shù)學(xué)建模的思想和方法應(yīng)當(dāng)成為當(dāng)代大學(xué)生必備的素質(zhì)。對絕大多數(shù)學(xué)生來說,這種素質(zhì)的初步形成與《高等數(shù)學(xué)》及其相關(guān)學(xué)科課程的學(xué)習(xí)有著十分密切的關(guān)系。 二、數(shù)學(xué)建模與數(shù)學(xué)綜合素質(zhì)提升 當(dāng)今的數(shù)學(xué)教育界,對什么是“數(shù)學(xué)素質(zhì)”,有過深入廣泛的討論。經(jīng)典的說法認(rèn)為,數(shù)學(xué)是一門研究客觀世界中數(shù)量關(guān)系和空間形式的科學(xué),因而,人們認(rèn)識事物的“數(shù)”、“形”屬性及其處理相應(yīng)關(guān)系的悟性和潛能就是數(shù)學(xué)素質(zhì)。一是抽取事物“數(shù)”、“形”屬性的敏感性。即注意事物數(shù)量方面的特點(diǎn)及其變化,從數(shù)據(jù)的定性定量分析中梳理和發(fā)現(xiàn)規(guī)律的意識和能力。二是數(shù)理邏輯推理的能力。即數(shù)學(xué)作為思維的體操、鍛煉理性思維的必由之路,可提高學(xué)生的邏輯思維能力和推理能力。三是數(shù)學(xué)的語言表達(dá)能力。 即通過數(shù)學(xué)訓(xùn)練所獲得的運(yùn)用數(shù)學(xué)符號進(jìn)行表達(dá)和思考、求助與追問的能力。四是數(shù)學(xué)建模的能力。即在掌握數(shù)學(xué)概念、方法、原理的基礎(chǔ)上,運(yùn)用數(shù)學(xué)知識處理復(fù)雜問題的能力。五是數(shù)學(xué)想像力。即在主動探索的基礎(chǔ)上獲得的洞察力和聯(lián)想、類比能力。因此,數(shù)學(xué)建模能力已經(jīng)成為數(shù)學(xué)綜合素質(zhì)的重要內(nèi)容。那么,數(shù)學(xué)建模對于學(xué)生的數(shù)學(xué)綜合素質(zhì)的提升表現(xiàn)在哪些方面呢? (一)拓展學(xué)生知識面,解決“為‘遷移’而教”的問題。數(shù)學(xué)建模是指針對所考察的實(shí)際問題構(gòu)造出相應(yīng)的數(shù)學(xué)模型,通過對數(shù)學(xué)模型的求解,使問題得以解決的數(shù)學(xué)方法。數(shù)學(xué)建模教學(xué)與其他數(shù)學(xué)課程的教學(xué)相比,具有難度大、涉及面廣、形式靈活的特點(diǎn),對學(xué)生綜合素質(zhì)有較高的要求。因此,要使數(shù)學(xué)建模教學(xué)取得良好的效果,應(yīng)該給學(xué)生講授解決數(shù)學(xué)建模問題常用的知識和方法,在不打亂正常教學(xué)秩序的前提下,周密安排數(shù)學(xué)建模教學(xué)活動,為將來知識的“遷移”打下基礎(chǔ)。具體可將活動分為三個階段:第一階段是補(bǔ)充知識,重點(diǎn)介紹實(shí)用的數(shù)學(xué)理論和數(shù)學(xué)方法,不講授抽象的數(shù)學(xué)推導(dǎo)和繁復(fù)的數(shù)學(xué)計(jì)算,有些內(nèi)容還可以安排學(xué)生自學(xué),以此調(diào)動學(xué)生的學(xué)習(xí)積極性,發(fā)揮他們的潛能;第二階段是編程訓(xùn)練,強(qiáng)化數(shù)學(xué)軟件包MATLAB編程,突出重要數(shù)學(xué)算法的訓(xùn)練;第三階段是數(shù)學(xué)建模專題訓(xùn)練,從小問題入手,由淺入深地訓(xùn)練,使學(xué)生體會和學(xué)習(xí)應(yīng)用數(shù)學(xué)的技巧,逐步訓(xùn)練學(xué)生用數(shù)學(xué)知識解決實(shí)際問題,掌握數(shù)學(xué)建模的思想和方法。[4] (二)發(fā)揮主觀能動性,強(qiáng)化學(xué)生自主學(xué)習(xí)能力。數(shù)學(xué)建模是一種對實(shí)際的現(xiàn)象通過心智活動構(gòu)造出能抓住其重要且有用的特征的表示,需要學(xué)生發(fā)揮主觀能動性,通過主體心智活動的參與,實(shí)現(xiàn)問題的建構(gòu)和解決。在大學(xué),自主學(xué)習(xí)是學(xué)生學(xué)習(xí)的一種重要方式。大學(xué)生課外知識的獲得、參與科研活動、撰寫畢業(yè)論文和進(jìn)行畢業(yè)設(shè)計(jì)等等,都是在教師的指導(dǎo)下的自主學(xué)習(xí),因此,自主學(xué)習(xí)的意識和能力培養(yǎng)成為提升大學(xué)生綜合素質(zhì)的關(guān)鍵。數(shù)學(xué)建模對于強(qiáng)化學(xué)生自主學(xué)習(xí)能力,培養(yǎng)數(shù)學(xué)綜合素質(zhì)無疑具有典型意義。由于數(shù)學(xué)建模對知識掌握系統(tǒng)性的要求,而這些系統(tǒng)的知識又不可能系統(tǒng)地獲得,很多參與數(shù)學(xué)建模學(xué)習(xí)和研究的學(xué)生,都深感其對提高自主學(xué)習(xí)能力的重要性,并從中汲取不竭的動力,進(jìn)行后續(xù)的學(xué)習(xí)和研究