午夜亚洲国产日本电影一区二区三区,九九久久99综合一区二区,国产一级毛片视频,草莓视频在线观看精品最新

加急見刊

論利用數學建模培養學生創新能力的探討

佚名

作者:劉任河羅進俞小祥胡端平

【論文關鍵詞】數學建模 創新能力創新思維 教學模式 【論文摘要】闡述了數學建模對培養學生創新能力的意義,討論了如何在數學建模的教學中培養學生的創新思維,探討了數學建模的教學模式。 1 引言 當今世界,創新取代了傳統的比較優勢,已經無可替代地成為國家競爭戰略的基礎。 因此,加強創新精神和創新能力的培養,已是世界各國教育改革的共同趨勢,也是我國實現“科教興國”戰略的基本要求,創新教育已經成為高等教育的核心,多年來的教育實踐證明,數學建模的教學與競賽活動在高等學校的創新教育中的地位和意義已是舉足輕重. 一年一度的全國大學生數學建模競賽活動是由國家教育部高教司直接組織領導,面向全國高校,規模最大,參與院校最多,涉及面最廣的一項科技競賽活動.其宗旨是“創新意識,團隊精神;重在參與,公平競爭”。自1992年舉辦第一屆競賽以來,參賽隊數以平均每年近30%的速度增加,2006年已達到864所院校9985個參賽隊的規模.正是由于數學建模競賽活動的深入開展,它積極地推動了大學數學教學改革的開展,并已取得了顯著的成果。 2 數學建模對培養學生創新能力的意義 高校作為人才培養的基地,圍繞加快培養創新型人才這個主題,積極探索教學改革之路,是廣大教育工作者面臨的一項重要任務。正是在這種形勢下,數學建模與數學建模競賽,這個我國教育史上新生事物的出現,受到了各級教育管理部門的關心和重視,也得到了科技界和教育界的普遍關注。這主要是數學建模的教學和競賽活動有利于人才的培養,特別是人才的綜合能力、創新意識、科研素質的培養.也正因為如此,數學建模活動的實際效果正在不斷的顯現出來,“數學建模的人才”和“數學建模的能力”正在實際工作中發揮著積極的作用。 數學建模本身就是一個創造性的思維過程。數學建模的教學內容、教學方法以及數學建模競賽培訓都是圍繞創新能力的培養這一核心主題進行的,其內容取材于實際,方法結合于實際,結果應用于實際.數學建模的教學和競賽培訓,為學生的探索性學習和研究性學習搭建了平臺。數學建模的教學和競賽,注重培養學生敏銳的觀察力、科學的思維力和豐富的想象力,既要求學生具有豐富的知識,又要求學生具有較強的實踐操作能力;既有智力和能力要求,又有良好的個性心理品質要求;既要求敢于競爭,又要求善于合作.數學建模真正體現了開發學生潛能、培養學生優秀心理品質以及積極探索態度的良好結合.在數學建模的教學與競賽中,特別注重發揮學生的主動性、積極性、創造性、耐挫折性,特別是提倡探索精神、創造精神、批判精神、團隊協作精神等.知識創新、方法創新、結果創新、應用創新無不在數學建模的過程中得到體現.實踐正在證明,數學建模的教學與競賽活動是培養大學生創新思維和創新能力的一種極其重要的方法和途徑。 3 在數學建模的教學中培養學生的創新思維 創新型人才是指具有較強的創新精神、創造意識和創新能力,并善于將創造能力化為創造性成果和產品的人才.盡管創新精神、創造意識和創新能力的培養不是一個學科或一門課程的教學所能完成的,但大量的中外教育實踐充分證明,數學教育在創新型人才的培養中具有其他學科不可替代的優勢和作用.因為數學中的理論和方法是人們從量的側面研究現實世界所得到的客觀規律,是研究各種科學技術不可缺少的語言和工具. 而數學建模的過程則恰好是將數學中的理論和方法又重新應用于解決現實問題,即是理論來源于實踐又要服務于實踐的一個完美體現.這一過程高度反映了人的創新精神、創造意識和創新能力。 數學本身包含著許多重要的思想方法,比如由特殊到一般的思想、從有限到無限的思想、歸納類比的思想、倒推逆向分析思維、試探思想等,其本質都是創造性思維方法.我們在數學建模的教學過程中不刻意地去追求運算技巧和方法,而將重點放在數學思想方法的傳授上,運用對數學思想方法的體會去啟迪學生的創新思維,激發學生的創新欲望。 數學上的歸納和類比思維是一種非常典型的創新思維,著名的數學家拉普拉斯說過“在數學里,發現真理的主要工具和手段是歸納和類比”.而大多數數學模型的建立、修改或改進,很多時侯都是依靠這種歸納與類比思維.在尋找模型求解的算法時,也常常用類比思維,利用相似的算法加以優化和改進而得到,有時甚至可以發現新的更好的算法. 發散思維是許多科學家非常重視的一種思維形式,科學家運用發散思維獲得重要發現的例子不勝枚舉.我們在數學建模的教學過程中倡導學生養成發散思維的習慣,通過一些具體的建模實例,讓學生感受到在科學上要敢于聯想,敢于突破條條框框,敢于標新立異。 逆向思維,即“反過來想一想”。人們思考問題時常常只注重于已有的聯系,沿著合乎習慣的正向順推,但有時如果采用“倒過來”思考的逆向思維方式,往往會產生意想不到的效果.比如,2004年全國大學生數學建模競賽A題:奧運會臨時超市網點設計中的第三個問題:若有兩種大小不同規模的迷你超市(Mini-Supermarket)類型供選擇,給出圖2中20個商區MS網點的設計方案(即每個商區內不同類型MS的個數,并滿足題中三個基本要求:滿足奧運會期間的購物需求、分布基本均衡、商業上盈利).在設計MS網點時為考慮滿足商業上盈利這一要求,如果單從正面去考慮商業上的盈利模型,則有很多未知的因素無法確定,諸如商品種類、數量、價格、銷售額等,因而無法建立模型.但若運用逆向思維,從市場需求去預測可能的盈利能力,因為市場需求量可利用前述問題中已得到的商區的人流量的分布,從而為后面的規劃模型的建立與求解提供了關鍵性的辦法。 4 數學建模教學模式的探索 剛踏入大學校門的大一新生,首先接受的是基礎數學教育,雖然這一階段將決定著學生畢業后能否成為創新型人才,但學校要想培養出高質量的創新型人才,基礎的數學教育是以知識傳授為主體的教與學的過程,多年來的事實證明,這一過程很難肩負對學生創新能力的培養.隨著數學建模與數學建模競賽這一事物的出現,人們很快發現,數學建模教學,尤其是數學建模競賽的培訓是實現這一目標的一條很好的途徑。經過多年來的摸索,我們對數學建模的教學模式做了如下探索。

下載