午夜亚洲国产日本电影一区二区三区,九九久久99综合一区二区,国产一级毛片视频,草莓视频在线观看精品最新

加急見刊

將生物信息學知識帶進醫學統計學課堂教學

吳騁

摘 要:生物信息學的蓬勃發展已使醫學研究由宏觀逐步探索到微觀。醫學統計學作為一門醫學院校的基礎課程,其理論和方法在醫學研究的新要求下其理論和方法也有了新的發展與應用。將生物信息學知識帶入醫學統計學課堂教學,介紹醫學統計學的新發展,不但能使學員了解到本學科的前沿研究內容,有效地激發學員的學習興趣,還能使他們掌握生物信息學研究的工具,提高今后從事醫學科研工作的能力。 關鍵詞: 生物信息學 醫學統計學 課堂教學 生物信息學融合了生物技術、計算機技術、數學和統計學的大量方法,已逐漸成為發現生命過程中所蘊涵知識的一門重要學科。其基本問題主要包括:DNA分析、蛋白質結構分析、分子進化。醫學統計學作為醫科院校的基礎課程之一,長期以來其理論和方法就廣泛應用于臨床醫學、基礎醫學的各類研究中。隨著生物新技術的誕生,在推動生物信息學發展的同時,醫學研究對象也由宏觀的病人、生物組織拓展到微觀的基因領域,所面對的實驗數據在性質和結構上也都有所不同,這對醫學統計學的應用提出了新的更高的要求。 目前,醫學統計學的很多原理和方法已成功地應用于這些新研究之中,并在此基礎之上有了新的發展和改進。如概率分布的知識與序列相似性分析、蛋白質分類等技術密切相關;方差分析、非參數檢驗方法經改進和結合后在基因表達數據的前期分析中發揮了較好的作用;而聚類分析、判別分析、相關分析這些大家所熟知的統計學方法更是在基因分類和調控網絡的建立中得到了廣泛的應用。在進行醫學統計學課堂教學時加入生物信息學方面的應用實例,不僅可以使學員了解本學科研究的前沿和醫學、生物信息學研究的新發展,還可以提高學員對于醫學統計學理論學習的興趣,掌握先進的生物實驗數據分析方法,提高今后從事醫學科研的能力。下面,本文在回顧醫學統計學授課主要內容的基礎上,就醫學和生物信息學中的可能應用舉例如下: 一、概率分布 概率分布(probability distribution)是醫學統計學中多種統計分析方法的理論基礎。授課內容一般包括:二項分布、Possion分布、正態分布、t分布、F分布等。 借助概率分布常常可以幫助我們了解生命指標的特征、醫學現象的發生規律等等。例如,臨床檢驗中計量實驗室指標的參考值范圍就是依據正態分布和t分布的原理計算得到;許多醫學試驗的“陽性”結果服從二項分布,因此它被廣泛用于化學毒性的生物鑒定、樣本中某疾病陽性率的區間估計等;而一定人群中諸如遺傳缺陷、癌癥等發病率很低的非傳染性疾病患病數或死亡數的分布,單位面積(或容積)內細菌數的分布等都服從Poisson分布,我們就可以借助Poisson分布的原理定量地對上述現象進行研究。 在生物信息學中概率分布也有一定應用。例如,Poisson分布可以用于基因(蛋白質)序列的相似性分析。被研究者廣泛使用的分析工具BLAST (Basic Local Alignment Search Tool)能迅速將研究者提交的蛋白質(或DNA)數據與公開數據庫進行相似性序列比對。對于序列a和b,BLAST發現的高得分匹配區稱為HSPs。而HSP得分超過閾值t的概率P(H(a,b)>t)可以依據Poisson分布的性質計算得到。 二、假設檢驗 假設檢驗(hypothesis)是醫學統計學中統計推斷部分的重要內容。假設檢驗根據反證法和小概率原理,首先依據資料性質和所需解決的問題,建立檢驗假設;在假設該檢驗假設成立的前提下,采用適當的檢驗方法,根據樣本算得相應的檢驗統計量;最后,依據概率分布的特點和算得的檢驗統計量的大小來判斷是否支持所建立的檢驗假設,進而推斷總體上該假設是否成立。其基本方法包括:u檢驗、t檢驗、方差分析(ANOVA)和非參數檢驗方法。 假設檢驗為醫學研究提供了一種很好的由樣本推斷總體的方法。例如,隨機抽取某市一定年齡段中100名兒童,將其平均身高(樣本均數)與該年齡段兒童應有的標準平均身高(總體均數)做u檢驗,其檢驗結果可以幫助我們推斷出該市該年齡段兒童身高是否與標準身高一致,為了解該市該年齡段兒童的生長發育水平提供參考。又如,醫學中常常可以采用t檢驗、秩和檢驗比較兩種藥物的療效有無差別;用?2檢驗比較不同治療方法的有效率是否相同等等。 這些假設檢驗的方法在生物實驗資料的分析前期應用較多,但由于研究目的和資料性質不同,一般會對某些方法進行適當調整和結合。 例如,基于基因芯片實驗數據尋找差異表達基因的問題。基因芯片(gene chip)是近年來實驗分子生物學的技術突破之一,它允許研究者在一次實驗中獲得成千上萬條基因在設定實驗條件下的表達數據。為了從這海量的數據中尋找有意義的信息,在對基因表達數據進行分析的過程中,找到那些在若干實驗組中表達水平有明顯差異的基因是比較基礎和前期的方法。這些基因常常被稱為“差異表達基因”,或者“顯著性基因”。如果將不同實驗條件下某條基因表達水平的重復測量數據看作一個樣本,尋找差異表達基因的問題其實就可以采用假設檢驗方法加以解決。 如果表達數據服從正態分布,可以采用t-檢驗(或者方差分析)比較兩樣本(或多樣本)平均表達水平的差異。 但是,由于表達數據很難滿足正態性假定,目前常用的方法基于非參數檢驗的思想,并對其進行了改進。該方法分為兩步:首先,選擇一個統計量對基因排秩,用秩代替表達值本身;其次,為排秩統計量選擇一個判別值,在其之上的值判定為差異顯著。常用的排秩統計量有:任一特定基因在重復序列中表達水平M值的均值 ;考慮到基因在不同序列上變異程度的統計量 ,其中,s是M的標準差;以及用經驗Bayes方法修正后的t-統計量: ,修正值a由M的方差s2的均數和標準差估計得到。

下載